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Abstract. We present a system employing large grammars and dictionaries to 

recognize a broad range of chemical entities. The system utilizes these re-

sources to identify chemical entities without an explicit tokenization step. To al-

low recognition of terms slightly outside the coverage of these resources we 

employ spelling correction, entity extension, and merging of adjacent entities. 

Recall is enhanced by the use of abbreviation detection and precision is en-

hanced by the removal of abbreviations of non-entities. With the use of training 

data to produce further dictionaries of terms to recognize/ignore our system 

achieved 86.2% precision and 85.0% recall on an unused development set. 
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1 Introduction 

BioCreative is a series of challenges that has traditionally focused on 

the recognition and handling of biochemical entities. BioCreative IV 

introduces the Chemical compound and drug name recognition task 

(CHEMDNER)
1
 which instead is focused on identifying chemical enti-

ties. Chemical entity recognition is important for identifying relevant 

documents and in text mining efforts to extract relationships involving 

chemicals e.g. drug-disease. 

 

Due to their diversity, quantity and availability, PubMed abstracts were 

chosen as the corpus for this exercise with 10,000 being manually an-

notated by the BioCreative team. 7,000 were provided to participants 

(divided equally into training and development sets) whilst the unseen 

3,000 were used to evaluated the performance of the solutions. 
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Attempts to tackle the problem of chemical entity recognition have in-

variably identified that the problem is not amenable to pure dictionary 

approaches due to the continuing discovery of novel compounds and 

the many ways in which systematic nomenclature allows compounds to 

be named
2
. Hence, state of the art systems use machine learning tech-

niques to extrapolate from training data the features that are associated 

with chemical nomenclature. Examples include OSCAR4 which em-

ploys a maximum-entropy Markov model
3
 and ChemSpot which em-

ploys a conditional random field model
4
. Comprehensive reviews of the 

area have been performed by Vazquez et al.
5
 and Gurulingappa et al.

6
 

 

LeadMine instead takes the approach of attempting to encode the rules 

used to describe systematic chemical nomenclature (as grammars), with 

large dictionaries being used for trivial names.  

 

As compared to machine learning approaches this makes the results 

readily understandable; false positives can be pin-pointed to a particular 

grammar/dictionary and false negatives are readily correctable by add-

ing the relevant nomenclature rule to a grammar or trivial name to a 

dictionary. 
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2 Discussion  

 

Figure 1 Annotation workflow diagram 

Figure 1 shows the workflow we developed; the steps are expounded 

on below. It should be noted that every step after the LeadMine Anno-

tator can be considered a form of post-processing, and any or all of 

these steps may be omitted. 
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2.1 Normalization 

To address the issue of there being many Unicode forms for characters 

with similar meaning a normalization step is performed. For example 

`(backtick), ‘ and ’  (single quotation marks) and ′ (prime) are all con-

verted to apostrophe. Another example is œ which is converted to oe. 

This step reduces the number of trivial variants that dictionar-

ies/grammars need to match. The normalization step also facilitates 

processing of XML documents by removing all tags. For example, 

<p>H<sub>2</sub>O</p> is normalized to H2O. This ability was, 

except in a handful of cases, irrelevant to PubMed abstracts. The index-

es of characters in the original string are associated with indexes in the 

normalized string to allow mapping back to the original input. 

2.2 LeadMine Annotation 

 

Figure 2 Dictionaries employed by LeadMine for CHEMDNER task (blue: grammars, green: 

traditional dictionaries, orange: blocking dictionaries) 
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The rules for chemical nomenclature are encoded as formal grammars 

e.g. 
 alkanStem : ‘meth’ | ‘eth’ | ‘prop’… 

 alkane: alkanStem ‘ane’ 

  Our grammar for systematic chemical names currently contains 485 of 

such rules. Grammars may inherit rules from other grammars as shown 

in Figure 2. To allow conversion of the grammar to an efficient form 

for matching
7
, the rules are restricted to the subset of rules that may be 

expressed by a regular grammar e.g. a rule may not reference itself. As 

correct nesting of brackets is not possible with this condition we en-

force correct nesting of brackets by keeping track while matching. 

 

The PubChem dictionary is our primary source of trivial names and is 

2.94 million terms. It was produced by running a series of filters 

against the ~94 million synonyms provided by PubChem. Most im-

portantly we removed terms that are an English word or start with an 

English word. Additionally we inspected the structures present in Pub-

Chem as to whether they contained tetrasaccharides (or longer) or hex-

adecapeptides (or longer) and excluded these records. 

2.3 Entity Extension / Merging 

We extended entities until we reached whitespace, a mismatched 

bracket or an English word/noise word. Additionally if an entity was 

entirely enclosed in balanced brackets and entity extension starting 

from before/after the brackets yielded a longer entity we used these 

entity boundaries. 

 

An exception was made for the case of two entities separated by a hy-

phen where both corresponded to specific compounds. In this case the 

end and start of the entities respectively are not extended and the enti-

ties are not merged. Such a construct often indicates a mixture e.g. 

‘Resorcinol-Formaldehyde’. 

 

Next entities are trimmed of “Non-essential parts of the chemical entity 

and name modifiers” e.g.  ‘group’, ‘colloidal’, ‘dye’ etc. Entities that 

overlap are merged together. Entities that are space separated are 

merged together unless one of the entities is found to be an instance of 

the other entity. For example genistein isoflavone is not merged as 
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genistein IS an isoflavone. These relationships are derived by use of a 

local copy of the ChEBI
8
 ontology. 

 

The aforementioned trimming process is repeated. Finally if after trim-

ming an entity corresponds to a blacklisted term it is excluded. An ex-

ample is ‘gold nanoparticles’ where ‘nanoparticles’ is excluded by 

trimming and ‘gold’ is explicitly not to be annotated in the annotation 

guidelines. 

 

By special case the ‘S’ in glutathione-S-transferase is annotated. 

2.4 Abbreviation Detection 

We used an adapted version of the Hearst and Schwartz algorithm
9
 to 

identify abbreviations of entities found by the system. By providing the 

“long form” (unabbreviated) we avoid one of the issues with the algo-

rithm which is that it may not identify the complete unabbreviated 

form. We extended the algorithm to recognized abbreviations of the 

following forms: 

 Tetrahydrofuran (THF) 

 THF (tetrahydrofuran) 

 Tetrahydrofuran (THF; 

 Tetrahydrofuran (THF, 

 (tetrahydrofuran, THF) 

 THF = tetrahydrofuran 

Abbreviations may contain brackets as long as they are balanced. The 

conditions described by Hearst and Schwartz are applied with the addi-

tional requirements that the short form must not be a common chemical 

identifier e.g. ‘1a’ or Roman numeral e.g. ‘II’. The minimum length of 

abbreviations is configurable and set to 3 for compliance with the anno-

tation guidelines. 

 

We also utilize a list of string equivalents to allow, for example, mercu-

ry to be abbreviated to Hg. Once an abbreviation has been detected all 

further instances of that string in that particular abstract are annotated. 
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2.5 Non-entity abbreviation removal 

In this step we postulate that an entity we have discovered is an abbre-

viation and use Hearst and Schwartz algorithm to find a potential long 

form for it. If the algorithm finds a suitable long form and this long 

form is not also an entity or overlaps with an entity we assume that the 

abbreviation entity is a false positive. We then remove both it and all 

other instances of it. For example when ‘current good manufacturing 

practice (cGMP)’ is seen cGMP clearly doesn’t mean cyclic guanosine 

monophosphate! 

3 Evaluation 

We used the training set to automatically identify holes in our coverage 

and identify common false positives and from this derived a dictionary 

of terms to include (Whitelist) and a dictionary of terms to exclude 

(BlackList). Below are our results for identifying all chemical entity 

mentions in the development set. 

 

Configuration Precision Recall F-score 

Baseline 0.869 0.820 0.844 

WhiteList 0.862 0.850 0.856 

BlackList 0.882 0.803 0.841 

WhiteList + Blacklist 0.873 0.832 0.852 

 

The addition of a whitelist dictionary provided a significant increase in 

recall, indicating that there are still gaps in the coverage of the system’s 

dictionaries and grammars. The use of a blacklist dictionary was less 

successful due to the loss of recall incurred. This is due to the blacklist 

being formed primarily of genuine chemical entities that in the context 

of the training set either were not annotated in the gold standard or 

formed part of longer chemical entities. 

 

The 5 runs submitted for the CEM (chemical entity mentions) and CDI 

(chemical document indexing) tasks used the following configurations: 

Run1: same as Baseline 

Run2: same as Whitelist but also used the development set for training 

Run3: same as BlackList but also used the development set for training 
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Run4: same as Whitelist + Blacklist but also used the development set 

for training 

Run5: Same as Whitelist 

 

For the CDI task we used the precision of entities on the development 

set to predict confidence and hence rank order the entities. We took into 

account which dictionary was used, whether the entity was in the title 

or abstract text, whether the entity was extended/merged and whether 

the entity occurred more than once in the union of the title/abstract text. 
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